Sunday, September 21, 2014

a bit of greedy: UVa 100249 - The Grand Dinner

Problem Statement:
UVa 100249 - The Grand Dinner

Summary:
Given several groups of people, each group consisting of several people, and given several tables of varying capacities, is it possible to place everyone in the tables such that people from the same group are not seated in the same table? If so, print out the possible arrangement.

Solution:
Apparently the problem is solvable by modeling it as some kind of matching problem and by finding the max-flow on the matching graph. However, apparently also, the problem can be solved using a greedy strategy by first sorting the groups in order of size, as well as the table in order of capacity, and start trying to assign each person in the group starting from the largest group down the sorted order of tables. Haven't thought of a proof yet...



#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <utility>
using namespace std;

/* First IDEA:
sort by no of ppl, sort by table
for each group, go through table in sorted order assign what is available
if possible, print arragement, otherwise no arrangement is possible
proof: dunno yet
*/

vector<pair<int,int> > ppl, tbl;
int pp[73] /*, tt[53]*/;
int ppp[73][103], ttt[73];
int main(){
    int N,M;
    while( cin >> M >> N ){
        if(N+M==0) break;
        ppl.clear();
        tbl.clear();
        for(int i=0;i<M;++i){
            int u;
            cin >> u;
            ppl.push_back(make_pair(u,i));
        }
        for(int i=0;i<N;++i){
            int u;
            cin >> u;
            tbl.push_back(make_pair(u,i));
        }
        sort(ppl.begin(), ppl.end());
        sort(tbl.begin(), tbl.end());
        reverse(ppl.begin(), ppl.end());
        reverse(tbl.begin(), tbl.end());
        for(int i=0;i<M;++i){
            pp[ppl[i].second] = i;
        }
        for(int i=0;i<N;++i){
            //tt[tbl[i].second] = i;
            ttt[i] = tbl[i].first;
        }
        bool ok = true;
        for(int i=0;i<M;++i){
            int sz = ppl[i].first;
            int k = 0;
            for(int j=0;j<sz;++j){
                bool found = false;
                for(;k<N;++k){
                    if(ttt[k] > 0){
                        found = true;
                        ppp[i][j] = tbl[k].second;
                        --ttt[k];
                        break;
                    }
                }
                if(!found){
                    ok = false;
                    break;
                }
                ++k;
            }
            if(!ok) break;
        }
        if(!ok) printf("0\n");
        else {
            printf("1\n");
            for(int i=0;i<M;++i){
                int sz = ppl[pp[i]].first;
                for(int j=0;j<sz;++j){
                    if(j != 0) printf(" ");
                    printf("%d", ppp[pp[i]][j]+1);
                }
                printf("\n");
            }
        }
    }
    return 0;
}

No comments:

Post a Comment