483A - Counterexample
Lots of ways to find a counterexample, easiest is to give 3 consecutive numbers starting with an even number.
Problem B:
483B - Friends and Presents
This problem is solvable using binary search. First notice that the number of elements in [1 .. v] that is divisible by a prime p is \( \lfloor \frac{v}{p} \rfloor \), and the number of elements divisible by both p and q is \( \lfloor \frac{v}{pq} \rfloor \). We are not interested in those which are divisible by both, since we can't give it to either person. Hence we can group the elements in [1 .. v] into 3 categories: those which are divisible by p only, those divisible by p only, and those not divisible by either p or q (or both). We can give all that is divisible by q to the first person, and give the ones divisible by p to the second person. Then what remains is to check whether we can distribute the rest which are not divisible by p or q such that it satisfies them both. If so, we can search for a lower value v, otherwise we have to increase v.
Problem C:
483C - Diverse Permutation
This problem is actually easier than problem B. Firstly notice that from 1 to N, if we write the sequence in an alternating order, we can get any value of K from 1 to N-1. Then the rest of the problem is just about constructing this sequence.
Problem D:
483D - Interesting Array
This problem is solvable using segment tree. Initially all N numbers are 0. Then for each query i, we only turn on the bits on elements l[i] to r[i] for all bits that is ON in q[i]. This is because the AND of the bits can only be 1 if all the bits are 1. Then finally we check for congruency once we have all the necessary bits turned on.
I used segment tree during the contest, but it gets a TLE since my implementation had quite a huge constant term. Here is a less slow implementation.
#include <iostream> #include <cstdio> #include <algorithm> #include <string> #include <vector> #include <utility> using namespace std; int N, M; int a[100003][33]; int q[100003][33]; int l[100003]; int r[100003]; int segtree[400003][33]; int lazy[400003][33]; void build(int tree, int p, int L, int R) { if(L > R) return; if(L == R) { segtree[p][tree] = a[L][tree]; return; } int mid = (L+R)/2; build(tree, p*2, L, mid); build(tree, p*2+1, mid+1, R); segtree[p][tree] = segtree[2*p][tree] & segtree[2*p+1][tree]; } int query(int tree, int p, int L, int R, int M, int N) { if(R < M || N < L) return -1; if(lazy[p][tree]) { return 1; } if(M <= L && R <= N) return segtree[p][tree]; int mid = (L+R)/2; int left = query(tree, 2*p, L, mid, M, N); int right = query(tree, 2*p+1, mid+1, R, M, N); if(left == -1) return right; if(right == -1) return left; return left & right; } void lazy_update(int tree, int p, int L, int R, int M, int N) { //printf("%d %d %d %d\n", L, R, M, N); if(R < M || N < L) return; if(lazy[p][tree]) { return; } if(M <= L && R <= N) { lazy[p][tree] = 1; return; } int mid = (L+R)/2; lazy_update(tree, 2*p, L, mid, M, N); lazy_update(tree, 2*p+1, mid+1, R, M, N); } void init(int tree){ build(tree, 1, 0, N-1); } int qqq[100003]; int res[100003]; int fintree[400003]; void build2(int p, int L, int R) { if(L>R) return; if(L==R){ fintree[p] = res[L]; return; } int mid = (L+R)/2; build2(p*2, L, mid); build2(p*2 + 1, mid+1, R); fintree[p] = fintree[2*p] & fintree[2*p+1]; } int query2(int p, int L, int R, int M, int N){ if(R < M || L > N) return -1; if(M<=L && R<=N) { return fintree[p]; } int mid = (L+R)/2; int left = query2(2*p, L, mid, M, N); int right = query2(2*p+1, mid+1, R, M, N); if(left == -1) return right; if(right == -1) return left; return left & right; } int main(){ cin >> N >> M; int qq; for(int i=0;i<M;++i){ scanf("%d %d %d", &l[i], &r[i], &qqq[i]); qq = qqq[i]; for(int j=0;j<30;++j){ q[i][j] = qq%2; qq /= 2; } --l[i]; --r[i]; } for(int i=0;i<30;++i){ init(i); } for(int i=0;i<M;++i){ for(int j=0;j<30;++j){ if(q[i][j] == 1) { lazy_update(j, 1, 0, N-1, l[i], r[i]); } } } for(int i=0;i<N;++i){ res[i] = 0; for(int j=29;j>=0;--j){ res[i] *= 2; res[i] += query(j, 1, 0, N-1, i, i); } } build2(1, 0, N-1); bool ok = true; for(int i=0;i<M;++i){ if(query2(1, 0, N-1, l[i], r[i]) != qqq[i]) { ok = false; break; } } if(ok){ printf("YES\n"); for(int i=0;i<N;++i){ if(i!= 0) printf(" "); printf("%d", res[i]); } printf("\n"); } else { printf("NO\n"); } return 0; }
No comments:
Post a Comment