787 - Maximum Sub-sequence
Solution:
Interesting DP problem, but the problem requires Big Integer implementation. Anyway the term "subsequence" here actually does not mean what you think it means, in this problem it refers to consecutive sequence of elements. The idea is simply to find an efficient way to calculate all resulting products off any consecutive sequences, which are only 10K of them since there are only 100 elements. This can be done using a DP technique in \(O(N^2)\).
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; struct bigint { int val[603]; int n; int sign; bigint() {} bigint(int a){ if(a == 0){ sign = 0; val[0] = 0; n = 1; return; } sign = 1; if(a < 0) { sign = -1; a *= -1; } n = 0; while(a) { val[n] = a%10; a/=10; ++n; } } void product(const bigint &other) { if(sign == 0 || other.sign == 0){ sign = 0; n = 1; val[0] = 0; return; } int tmp[604]; sign *= other.sign; for(int i=0;i<604;++i) tmp[i] = 0; for(int i=0;i<n;++i){ for(int j=0;j<other.n;++j){ tmp[i+j] += val[i] * other.val[j]; } } int k = 0; while(k < n+other.n-2 || tmp[k] != 0){ tmp[k+1] += tmp[k]/10; tmp[k] %= 10; ++k; } n = k; for(int i=0;i<n;++i){ val[i] = tmp[i]; } } void bigger(const bigint& other) { if(sign < other.sign || (sign == 1 && other.sign == 1 && other.n > n) || (sign == -1 && other.sign == -1 && other.n < n) ) { for(int i=0;i<other.n; ++i){ val[i] = other.val[i]; } sign = other.sign; n = other.n; } else if(sign == 1 && other.sign == 1 && other.n == n) { bool iambigger = true; for(int i=n-1;i>=0;--i){ if(val[i] < other.val[i]){ iambigger = false; break; } } if( !iambigger) { for(int i=0;i<other.n; ++i){ val[i] = other.val[i]; } sign = other.sign; n = other.n; } } else if(sign == -1 && other.sign == -1 && other.n == n) { bool iambigger = true; for(int i=n-1;i>=0;--i){ if(val[i] > other.val[i]){ iambigger = false; break; } } if( !iambigger) { for(int i=0;i<other.n; ++i){ val[i] = other.val[i]; } sign = other.sign; n = other.n; } } } void print() { if(sign == -1) printf("-"); for(int i=n-1;i>=0;--i){ printf("%d", val[i]); } printf("\n"); } }; bigint P[103][103]; int main(){ int v; while(cin >> v) { int N = 1; P[0][0] = bigint(v); bigint ans = P[0][0]; while(cin >> v) { if(v == -999999) break; P[N][N] = bigint(v); ans.bigger(P[N][N]); ++N; } for(int k = 1; k < N; ++k){ for(int i=0;i+k<N;++i){ int j = i+k; P[i][j] = P[i][i]; P[i][j].product(P[i+1][j]); //printf("%d %d ", i, j); //P[i][j].print(); ans.bigger(P[i][j]); } } ans.print(); } return 0; }
No comments:
Post a Comment