Sunday, December 21, 2014

Codeforces Round 270 Problem D - Design Tutorial: Inverse The Problem

Problem Statement:
472D - Design Tutorial: Inverse The Problem

Solution:
Pretty interesting problem. Given a matrix of distances between nodes dist[u][v], return a weighted tree that satisfies this matrix. Here is my approach (I believe this is not the most efficient (or even efficient) or clever idea, but it worked :P)



First, based on the distances, run Dijkstra algorithm choosing any node as the source, and we will have a shortest path tree with as that source node as the root. We will also have the information of the shortest distances from root to all other nodes, d[u]. Then the idea is, for each pair of node, we check whether the distance matrix is consistent with this information on shortest distances from root. For each node u and v, we have two cases:
1. The lowest common ancestor of u and v is u or v themselves. Then if the tree is valid, dist[u][v] = |d[u] - d[v]|.
2. The lowest common ancestor of u and v is another node p. Then p is the root of a subtree containing u and v, hence we must have dist[u][v] = d[u] + d[v] - 2 * d[p].

If all these are consistent, then we have found the desired tree. Finding lowest common ancestor can be done in \(O(N\lg{N})\) using segment tree on the euler path of the shortest path tree.

Implementation:

#include <iostream>
#include <cstdio>
#include <vector>
#include <utility>
#include <algorithm>
#include <cstring>
using namespace std;
long long INF = (long long) 1e10;
int vis[2003];
int dist[2003][2003];
int idx[2003];
int height[2003];
int segtree[16003];
int head[2003];
long long d[2003];
vector<int> euler;
vector<vector<int> > tree;
int n;
bool ok = true;
void djikstra(int source){
 for(int i=0;i<n;++i){
  d[i] = INF;
 }
 d[source] = 0;
 head[source] = source;
 int cnt = 0;
 while(cnt != n){
  int cur = -1;
  for(int i=0;i<n;++i){
   if(vis[i]) continue;
   if(cur == -1 || d[cur] > d[i]){
    cur = i;
   }
  }
  if(d[cur] == 0 && cur != source) {
   ok = false;
   break;
  }
  vis[cur] = 1;
  if(head[cur] != cur) {
   tree[head[cur]].push_back(cur);
   tree[cur].push_back(head[cur]);
  }
  for(int i=0;i<n;++i){
   if(vis[i]) continue;
   if(d[i] >= d[cur] + dist[cur][i]){
    d[i] = d[cur] + dist[cur][i];
    head[i] = cur;
   }
  }
  ++cnt;
 }
}

void dfs(int u, int level) {
 vis[u] = 1;
 euler.push_back(u);
 idx[u] = euler.size()-1;
 height[u] = level;
 for(int i=0;i<tree[u].size();++i){
  int v = tree[u][i];
  if(vis[v]) continue;
  dfs(v, level+1);
  euler.push_back(u);
 }
}

void build(int p, int L, int R){
 if(L==R){
  segtree[p] = euler[L];
  return;
 }
 int M = (L+R)/2;
 build(2*p, L, M);
 build(2*p+1, M+1, R);
 segtree[p] = (height[segtree[2*p]] < height[segtree[2*p+1]] ? segtree[2*p] : segtree[2*p+1]);
}

int rmq(int p, int L, int R, int S, int T){
 if(R < S || T < L) return -1;
 if(S <= L && R <= T) {
  return segtree[p];
 }
 int M = (L+R)/2;
 int left = rmq(2*p, L, M, S, T);
 int right = rmq(2*p+1, M+1, R, S, T);
 if(left == -1) return right;
 if(right == -1) return left;
 return (height[left] < height[right] ? left : right);
}


int main(){
 scanf("%d", &n);
 for(int i=0;i<n;++i){
  for(int j=0;j<n;++j){
   scanf("%d", &dist[i][j]);
  }
 }
 tree = vector<vector<int> > (n+3);
 d[0] = 0;
 djikstra(0);
 if(!ok){
  printf("NO\n");
  return 0;
 }
 memset(vis, 0, sizeof vis);
 dfs(0,0);
 build(1,0,euler.size()-1);
 for(int i=0;i<n;++i){
  for(int j=0;j<n;++j){
   if(idx[j] < idx[i]) continue;
   int par = rmq(1, 0, euler.size()-1, idx[i], idx[j]);
   if(i == par || par == j || i == j) {
    int tmp = max(d[i]-d[j], d[j] - d[i]);
    if(dist[i][j] != tmp || dist[i][j] != dist[j][i]){
     ok = false;
     break;
    }
   } else {
    if(dist[i][j] != d[i] + d[j] - 2*d[par] ||
       dist[j][i] != dist[j][i]) {
     ok = false;
     break;
    }
   }
  }
  if(!ok)break;
 }
 if(ok) printf("YES\n");
 else printf("NO\n");
 return 0;
}

No comments:

Post a Comment