Tuesday, January 6, 2015

Codeforces 459D - Pashmak and Parmida's Problem

Problem Statement:
459D - Pashmak and Parmida's Problem

Solution:
One interesting use of segment tree. The idea is to first build left[i] and right[i] arrays, where left[i] = f(1,i,\(a_i\)) while right[i] = (i,n,\(a_i\)). Then realize that both left[i] and right[i] is at most \(10^6\), which is good because we can build a segment tree on them!

We will iterate from i = N to 1. Let A be the answer to our problem, and S be an array where S[i] represents how many i already encountered so far. The segment tree will answer such queries Q(L,R) which is the sum of S[i] where i \(\in [L,R]\). Hence, for every i, we add S[right[i]] by one, and then increase A by Q(1,left[i-1]-1).

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cassert>
#include <cstring>
#include <map>
using namespace std;

int L[1000003], R[1000003], a[1000003], segtree[4000005];
int N;

void update(int p, int L, int R, int S){
    if(R<S || S<L)return;
    if(L==R && R==S){
        segtree[p]++;
        return; 
    }
    int M=(L+R)/2;
    update(2*p,L,M,S);
    update(2*p+1,M+1,R,S);
    segtree[p] = segtree[2*p]+segtree[2*p+1];
}

int rmq(int p,int L,int R,int S,int T){
    if(S>T)return 0;
    if(R<S || T<L)return -1;
    if(S<=L && R<=T)return segtree[p];
    int M=(L+R)/2;
    int left=rmq(2*p,L,M,S,T);
    int right=rmq(2*p+1,M+1,R,S,T);
    if(left<0)return right;
    if(right<0)return left;
    return left+right;
}

int main(){
    map<int,int> st;
    scanf("%d", &N);
    for(int i=0;i<N;++i){
        scanf("%d", &a[i]);
    }
    for(int i=0;i<N;++i){
        st[a[i]]++;
        L[i] = st[a[i]];
    }
    st.clear();
    for(int i=N-1;i>=0;--i){
        st[a[i]]++;
        R[i] = st[a[i]];
    }
    long long ans = 0;
    for(int i=N-1;i>0;--i){
        update(1,1,1000000,R[i]);
        ans+=rmq(1,1,1000000,1,L[i-1]-1);
    }
    cout << ans << endl;
    return 0;
}

No comments:

Post a Comment